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Local elastic constants in thin films of an fcc crystal

Kevin Van Workum and Juan J. de Pablo
Department of Chemical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53706

~Received 10 October 2002; published 11 March 2003!

In this work we present a formalism for the calculation of the local elastic constants in inhomogeneous
systems based on a method of planes. Unlike previous work, this formalism does not require the partitioning
of the system into a set of finite volumes over which average elastic constants are calculated. Results for the
calculation of the local elastic constants of a nearest-neighbor Lennard-Jones fcc crystal in the bulk and in a
thin film are presented. The local constants are calculated at exact planes of the~001! face of the crystal. The
average elastic constants of the bulk system are also computed and are consistent with the local constants.
Additionally we present the local stress profiles in the thin film when a small uniaxial strain is applied. The
resulting stress profile compares favorably with the stress profile predicted via the local elastic constants. The
surface melting of a model for argon for which experimental and simulation data are available is also studied
within the framework of this formalism.
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I. INTRODUCTION

Knowledge of the local elastic constants in inhomog
neous systems is of significant theoretical, experimental,
industrial interest. As nanofabrication technologies impro
and allow for the design and construction of nanoscopic
vices, understanding the mechanical response of materia
nanometer length scales will become increasingly import
In particular, deviations from bulk, continuum behavior m
lead to complications in the manufacturing of such devic
For example, in the microelectronics industry, the mecha
cal collapse of photoresist structures below 100 nm m
limit the ultimate density of memory storage devices or
performance of microprocessors@1–3#.

In nanoscopic structures, interfaces are likely to play
major role in apparent deviations from bulk, continuum b
havior@4#. The interface could either weaken or reinforce t
overall mechanical behavior of the structure, depending
the nature of interactions between adjacent domains and
size of the structure. Understanding how mechanical pro
ties vary near interfaces or free surfaces would provide
sights into such phenomena.

Knowledge of interfacial behavior is crucial for unde
standing the adhesion of thin polymer films, where the in
diffusion of the polymers and the molecular mobility ne
the film boundaries play a significant role@5#. Properties
such as adhesion, dewetting, and surface melting in
films are likely to be controlled by processes that oc
within the first few nanometers of the interface. It wou
therefore, be beneficial to have the ability to measure~com-
putationally or experimentally! physical properties with mo
lecular spatial resolution.

A microscopic definition for local elastic constants h
been proposed in the literature@6,7#. Implementation of that
formalism requires thatlayer-averagedlocal elastic con-
stants be determined. For inhomogeneous systems, th
sults from averaging over a particular layer depend stron
on the size and position of that layer. This is particularly tr
in an interfacial region or near a free surface, where mate
properties can change significantly over short distances.
1063-651X/2003/67~3!/031601~7!/$20.00 67 0316
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In this work, we are interested in the local elastic co
stants and surface melting of thin crystalline films. Spec
cally, we present a formalism in which the local elastic co
stants are calculated at precise planes in the system
opposed to small volumes or slabs. In the bulk, the cal
lated local elastic constants are verified by averaging o
the entire system and comparing the results to the bulk va
The local elastic constants in the film are verified by co
paring the local stress profiles that arise from uniaxial str
and those calculated directly from the elastic constants.

II. THEORY

In a homogeneous material, applying a homogene
strain necessarily results in a homogeneous stress. The s
is given by

s i j 5Ci jkl e lk , ~1!

whereCi jkl is the bulk elasticity tensor, and where the ind
ces represent the Cartesian coordinates in three dimens

When a homogeneous strain is applied to an inhomo
neous system, the resulting stress is also inhomogene
The local stress is then given by

s i j ~r !5Ci jkl ~r !e lk , ~2!

whereCi jkl (r ) is the local elasticity tensor. The relationshi
between the local and bulk elasticity tensors can be writ
as

Ci jkl 5
1

VEV
Ci jkl ~r !dr , ~3!

whereV is the volume of the system.
The bulk elasticity tensor can be expressed in terms of

fluctuations of stress according to@8#
©2003 The American Physical Society01-1
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Ci jkl 52rkBT@d i l d jk1d ikd j l #

2
V

kBT
@^Pi j Pkl&2^Pi j &^Pkl&#1Bi jkl , ~4!

wherer is the density,d i j is the Kronecker delta,Pi j is the
pressure tensor, andBi jkl is the so-called Born term. Th
pressure tensor is given by

Pi j 5
1

V F(
a

pai
paj

/ma2 (
a,b

r ab
21uab8 r abi

r abj G . ~5!

The potential energy between interaction sitesa and b is
denoted byuab , r ab is the distance between them,pa andma
are the momentum and mass of sitea, respectively, and the
prime indicates a derivative with respect tor ab . The Born
term is related to the first and second derivatives of the
tential energy of interaction by

Bi jkl 5
1

V K (
a,b

Fuab9

r ab
2

2
uab8

r ab
3 G r abi

r abj
r abk

r ablL . ~6!

In this work, we focus on the elastic properties of th
films having a planar symmetry; the films are assumed in
mogeneous only in the direction perpendicular to the fi
i.e., z. Equation~4! must, therefore, be modified to calcula
the elasticity tensor at precise planes within the system, w
out need for bins or small volumes. To this end, we use
method of planes~MOP! @9# and obtain an expression for th
local elasticity tensor.

The first term in Eq.~4! is the ideal gas contribution to th
elasticity tensor. The kinetic energy is homogeneously d
tributed, even in inhomogeneous systems, and the temp
ture is independent ofz. However, the density can vary in th
z direction. The density profiler(z) could be calculated by
dividing the system into many small bins and counting
average number of particles per unit volume in the bins. T
density would then explicitly depend on the size of the b
used. Alternatively, one can use the fact that for a free sta
ing film the total normal pressurePzz5r(z)kBT1Pzz

u (z) is
constant throughout the system@10#. In vacuum, we then
have for the density profile

r~z!52
Pzz

u ~z!

kBT
, ~7!

wherePzz
u (z) is the configurational contribution to the loc

pressure tensor. The local pressure tensor is the sum of
and configurational terms, and can be calculated accordin
@10,11#

Pi j ~z!5r~z!kBT2
1

A K (
a,b

r abi
r abj

r ab
u8~r ab!

3
1

QS z2zaDQS zb2zD L , ~8!

uzabu zab zab
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whereA is the cross-sectional area of the film andQ is the
Heaviside step function. The first term in Eq.~4! can then be
written for inhomogeneous systems as

Ci jkl
id ~z!52r~z!kBT@d i l d jk1d ikd j l #. ~9!

The second term in Eq.~4! arises from bulk stress fluc
tuations; it accounts for the nonzero temperature contribu
to the elastic constants. We are interested in relating the l
stresss(z) to a bulk homogeneous strain. Therefore, inste
of including the bulk-stress correlation, we use the corre
tion between the local stress and the average bulk stress
second term can then be written as

Ci jkl
f luc~z!52

V

kBT
@^Pi j ~z!Pkl&2^Pi j ~z!&^Pkl&#. ~10!

Note that the volumeV in Eq. ~10! cancels that in Eq.~5! and
there also is no explicit volume dependence in the M
expression forPi j (z).

The Born term, Eq.~4!, can be calculated at planes usin
the MOP in the same way the local stress is determined,
Eq. ~8!. We have for the Born term in inhomogeneous sy
tems

Bi jkl ~z!5
1

A K (
a,b

Fuab9

r ab
2

2
uab8

r ab
3 G 1

uzabu
QS z2za

zab
D

3QS zb2z

zab
D r abi

r abj
r abk

r ablL . ~11!

As before, this expression does not depend on the volum
the system or the~arbitrary! size of a bin.

The final expression for the local elasticity tensor in inh
mogeneous systems with planar symmetry is given by

Ci jkl ~z!5Ci jkl
id ~z!1Ci jkl

f luc~z!1Bi jkl ~z!. ~12!

We emphasize again that this expression forCi jkl (z) is valid
for inhomogeneous systems and is an average only ov
cross section~a plane! of the system, not a discrete volum
It, therefore, relates the local stress~at z) to a homogeneous
strain. Also note that Lutskoet al. @6# have presented a der
vation for the local elasticity tensor, but they averaged ove
subvolume in order to facilitate the computations. It can
seen that by integrating over the entire system, one reco
the bulk elasticity tensor, Eq.~4!. We also note that this
expression does not require the use of any dynamic varia
but only requires ensemble averages taken from system
figurations. It, therefore, is useful in either molecular dyna
ics or Monte Carlo~MC! simulations.

We note that other valid definitions of the local stre
tensor have been presented@12–14# and discussed exten
sively in the literature@10,15#. These definitions would in
principle lead to different expressions for the local elastic
tensor. Regardless of the definition, one should expec
recover the bulk elasticity tensor after averaging over
entire system. The definition used in this work is that
Irving and Kirkwood @11#. This definition was chosen her
1-2
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because it has been shown to be a physically valid st
tensor@15# and it can be used in MC simulations.

III. SIMULATIONS

To demonstrate the calculation of the local elasticity te
sor, we employ the widely used nearest-neighbor Lenna
Jones~NNLJ! fcc crystal model@16–21#. In what follows, all
results will be reported in dimensionless Lennard-Jo
units.

A bulk system consisting of 1000 particles with period
boundary conditions in all three dimensions was investiga
first. This system was simulated in the canonical~constant
NVT! ensemble at a temperature ofT50.3 using a simple
MC method. The density was chosen such that the ave
bulk pressure is zero. The center of mass of one atomic la
was held fixed atz50. The average bulk elastic constants f
this system have been calculated previously and are liste
Table I. Reported elastic constants, stresses and strain
represented using Voigt notation@22#. For bulk fcc systems
there are three groups of nonzero, independent elemen
the elastic constant matrix

C53
C11 C21 C21 0 0 0

C21 C11 C21 0 0 0

C21 C21 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

4 . ~13!

Second, we also consider a free standing film of 450 p
ticles. The free surfaces correspond to the (001) face of
fcc crystal. This system was also simulated in the canon
ensemble using a conventional MC method. In this case
cross-sectional area was held constant with the same dim
sions as the bulk system. The film had nine atomic lay
parallel to the free surfaces. The temperature was the sam
in the bulk, i.e.,T50.3. The center of mass of the film wa
held fixed atz50. For an fcc film with free surfaces norma
to the z axis, there are six groups of nonzero, independ
elements of the elastic constant matrix

TABLE I. Values of the three independent elastic constants
the bulk fcc crystal in dimensionless Lennard-Jones units. The
column is the average value of eight atomic layers of the~001! face
in the bulk from Eq.~12!.

Ci j Ref. @25# Eq. ~4! Z21*Ci j
b (z)dz

C11 43.35 43.22 43.37
C21 19.01 19.45 19.22
C44 22.50 22.60 22.35
03160
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C53
C11 C21 C31 0 0 0

C21 C11 C31 0 0 0

C31 C31 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

4 . ~14!

Local properties of the film and the bulk system we
calculated from Eq.~12! at planes of constantz, with each
plane being separated by a distance of 0.02 in both the
film and bulk systems. The average elastic constants w
also calculated in the bulk system from Eq.~4!.

An additional simulation of the thin film was performe
in which a homogeneous, tensile, and uniaxial strain w
applied in thex direction,e150.010 05. The strain is define
as @23#

e15
1

2 F S Lx

Lx
0D 2

21G , ~15!

whereLx is the length of the simulation cell in thex direction
andLx

0 is its original length. Since the strain is homogeneo
it is known that the average strain in a plane of atoms pa
lel to the free surface is equal to the applied strain@24#. The
resulting stress profiles were then calculated using Eq.~8!.
The stress profiles were also calculated directly from
elastic constants using Eq.~2!.

IV. RESULTS

The local elastic constant profiles forC11
b (z) and C21

b (z)
in the bulk system are shown in Fig. 1 and Fig. 2, resp
tively. The density profilerb(z) is also shown in these fig
ures. Each peak in the profile atC11

b '175 andC21
b '150

corresponds to the center of mass of each atomic layer. E
minimum atC11

b '22.5 andC21
b '0 corresponds to the mid

point between each atomic layer. The local elastic cons
profile for C44

b is similar toC21
b and is not shown. The aver

f
st

FIG. 1. C11
b (z) ~solid line! as a function ofz for the bulk system

from Eq.~12!. The density profilerb(z) is shown as the dotted line
1-3
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age bulk elastic constants can be calculated from the l
constants using

Ci j
b 5

1

ZEZ
Ci j

b ~z!dz, ~16!

whereZ is the width of the system. In this example, we seZ
to the width of eight atomic layers in the bulk. The avera
bulk elastic constants calculated from Eq.~16! are given in
Table I. The bulk elastic constants from Eq.~4! and the lit-
erature values@25# are also given in Table I. All three value
for each elastic constant agree well with one another.
local elastic constant profiles forC11

f (z) and C21
f (z) in the

thin film are shown in Fig. 3 and Fig. 4, respectively. T
density profiler f(z) is also shown in these figures. Th
peaks corresponding to the atomic layers in the center of
film (z50) have approximately the same maximum valu
as in the bulk system, i.e.,Ci j

f (0)'Ci j
b (0). However, the

minimum values between each layer near the center of
film are less than in the bulk. Interestingly,C21

f (z) exhibits
negative values between each layer. The meaning of th
negative values is discussed below.

The peak values of the elastic constants decrease from
center of the film as the free surfaces are approached.

FIG. 2. C21
b (z) ~solid line! as a function ofz for the bulk system

from Eq.~12!. The density profilerb(z) is shown as the dotted line

FIG. 3. C11
f (z) ~solid line! as a function ofz for the film system

from Eq.~12!. The density profiler f(z) is shown as the dotted line
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profiles also become broader near the free surfaces. The
crease of the local elastic constants is an indication of
enhanced atomic mobility at the surfaces.

In order to investigate the effect of film thickness, a fil
consisting of 17 atomic layers was also simulated. Figur
shows the local elastic constant profile forC11

f (z) in the film
with 17 layers. The effect of the free surface is limited to t
first two atomic layers for both this system and that shown
Fig. 3. The elastic constant profiles for both film thickness
are consistent with one another. The local stress profiles
shown in Fig. 6 fors1(z) and in Fig. 7 fors2(z) after a
homogeneous uniaxial strain was applied. The local str
profiles in the film were calculated from Eq.~2! using the
local elasticity tensor measured at zero strain. The lo
stress profiles were also calculated in the strained film a

s i~z!52@Pi~z!ue5e1
2Pi~z!ue50#, ~17!

where we used Eq.~8! for Pi(z). The results are shown in
Figs. 6 and 7. The fact that the two methods for calculat
the local stress profiles give the same result is reassuring
demonstrates that the response to the applied strain is lin
For s2(z), we find that the tensile~positive! uniaxial strain
in x direction causes a negative stress in the reg

FIG. 4. C21
f (z) ~solid line! as a function ofz for the thin film

from Eq.~12!. The density profiler f(z) is shown as the dotted line

FIG. 5. C11
f (z) as a function ofz for a film with 17 atomic

layers.
1-4
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LOCAL ELASTIC CONSTANTS IN THIN FILMS OF AN . . . PHYSICAL REVIEW E67, 031601 ~2003!
between the atomic layers~Fig. 7!. This is directly related to
the negative elastic constants seen inC21

f (z).

V. SURFACE MELTING

In order to study the melting behavior of a thin crystalli
film, we adopt the model for argon used by Eerdenet al.
@26#. As before, we study the~001! surface of the crystal
The interaction is described by the truncated LJ poten
given by

uab54.569eF S r ab

s D 212

2S r ab

s D 26G3expS 0.25s

r ab22.5s D .

~18!

Eerdenet al. report the bulk elastic properties for this sy
tem.

FIG. 6. Profiles fors1 in the thin film after a small homogenou
uniaxial straine1 is applied. The solid line is calculated from th
elastic constants and Eq.~2!, and the dotted line is calculated d
rectly from the simulation using Eq.~8!.

FIG. 7. Profiles fors2 in the thin film after a small homogenou
uniaxial straine1 is applied. The solid line is calculated from th
elastic constants and Eq.~2!, and the dotted line is calculated d
rectly from the simulation using Eq.~8!.
03160
l

Consistent with Eerdenet al., we have 32 atoms in eac
layer of the crystal and use films consisting of 16 layers. T
elastic constants are calculated at planes in the top half o
film separated by a distance ofdz50.02. At each tempera
ture, the lateral dimensions of the simulation cell were tak
from the average size of a bulk simulation cell at zero pr
sure. The surface of the film was aligned perpendicular to
z axis and the center of mass was fixed atz50.

Analogous to the definition of the average lateral sh
modulus for a slab betweenz andz8 (ms@z,z8#) by Eerden
et al., we define the local lateral shear modulus at a planz
as

m i
s~z!5

1

8 (
a5x,y

(
b5x,y

@Cabba~z!1Cabab~z!2Caabb~z!#.

~19!

Note that this definition is a projected~onto thexy plane!
version of the usual shear modulus for an isotropic solid@7#.
Since we are interested in the melting behavior of an an
tropic solid, another useful definition of the local later
shear modulus is

ma
s~z!5C66~z!. ~20!

As the crystal nears its melting point it becomes less an
tropic and we expectma

s to approachm i
s . The melting point

is defined, here, as the temperature at whichma
s and m i

s

vanish. The shear moduli as a function of position in the fi
are shown in Fig. 8 at four different temperatures. The d
sity profiles at these temperatures are shown in Fig. 9.
density profile has units ofs23 and its integral over the
entire system,A*zr(z)dz, gives the total number of particle
in the film. In the following discussion, we will refer to th
layers starting with the surface layer as layer 1, layer 2,

The behavior at the lowest temperature@Fig. 8~a!# T
50.4 is similar to that of the NNLJ film, having bulk behav
ior in the center of the film and decreasing moduli in t
layers near the surface. The difference betweenm i

s and ma
s

reflects the fact that the crystal is anisotropic, even in
layer nearest to the surface, layer 1. This is also eviden

FIG. 8. The shear moduli profiles in a thin film of argon at fo
temperatures. The solid line is thema

s and the dotted line ism i
s .
1-5
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the density profile@Fig. 9~a!#, where all the atomic layers o
the crystal are separated by regions of empty space. At t
peratures aboveT50.4, isolated atoms have sufficient e
ergy to escape layer 1 and occupy positions outside the
~layer 0!. This additional layer can be seen as the very sm
peak centered atz56.82. The additional layer, however, ha
a zero shear modulus.

At T50.5, the shear moduli@Fig. 8~b!# of each layer have
decreased from those atT50.4, indicating a softening of the
crystal. The difference betweenm i

s and ma
s has decreased

considerably in layer 1, indicating nearly isotropic behav
near the melting temperature. The number of atoms, wh
escape from layer 1 has increased, indicated by the la
peak or shoulder in the density profile@Fig. 9~b!# at z
56.82.

In Fig. 8~c! and Fig. 9~c! (T50.575), the behavior of the
layers near the surface has changed significantly. Bothm i

s

andma
s are essentially zero~indicating isotropy and melting!

at layer 1 even though the density profile exhibits some
maining structure in that region. Between layer 1 and laye
and between layer 2 and layer 3, the density is nonzero
the shear modulus is zero. A small amount of argon exist
a fluid between these layers. Layer 0 contains even m
atoms at this temperature and shows a flat density shou
which decays to zero, indicating a loss of structure at
film-vacuum interface. At temperatures just belowT
50.575 and above, the delineation of layer thickness
comes ambiguous and the use of a layer-averaged s
modulus becomes questionable. The method of planes
posed here eliminates that ambiguity.

At T50.6, the shear modulus of the entire film is ze
and the density profile is flat. The film is a liquid througho
and has none of the structure originally present in the c
talline film at lower temperatures. An average shear modu
for the surface layer can be defined by integrating the profi
in Fig. 8. The average shear modulus is given by

m̄s5
1

DzEzmin

zmax
ms~z!dz. ~21!

FIG. 9. The density profiles in a thin film of argon at fou
temperatures.
03160
m-

m
ll

r
h
er

-
2
et
as
re
er,
e

-
ear
ro-

t
s-
s
s

A layer thicknessDz must first be defined in order to pe
form the integration. We arbitrarily chooseDz for the surface
layer to be the distance between the peaks in the den
profile of layer 1 and layer 2 at each temperature. In Eq.~21!,
zmin is the location of the minimum density between layer
and layer 2 andzmax5zmin1Dz.

The results form̄ i
s andm̄a

s of the surface layer are show
in Fig. 10 for temperatures up toT50.575. Both shear
moduli decrease sharply with increasing temperature
vanish atT50.575, indicating melting of the surface laye
This is in agreement with the literature value ofT50.576.
The bulk melting temperature isTb50.601@26#.

VI. CONCLUSION

A formalism for calculation of the local elastic constan
in inhomogeneous systems based on the method of pl
has been presented. Unlike previous work, this formali
does not require the partitioning of the system into a se
finite volumes or ‘‘slabs’’ over which average elastic co
stants are calculated. As a demonstration of the techni
Monte Carlo simulations of the nearest-neighbor Lenna
Jones fcc crystal in the bulk and in thin film geometries ha
been presented.

The local atomic structure of the crystals was evident
the local elastic constants calculated at precise planes. In
thin film, the elastic constants are decreased from the co
sponding bulk values, especially near the free surfaces.
decrease near a free surface is expected to give rise to a
ent deviations from bulk continuum behavior in thin film
and nanoscopic structures.

The melting behavior of argon in a thin film was als
investigated within the context of this formalism. Resu
show how the shear modulus profile of the surface layer
atoms vanishes below the melting temperature of the cor
the film. Below the melting temperature of the film, the fr
surface allows sufficient thermal motion for the surface
oms to reach an isotropic liquid state prior to the bulk of t
film.

FIG. 10. The average lateral shear moduli in a thin argon film
a function of temperature.
1-6



s.

,

.

ry on

s-
7
s.

.

LOCAL ELASTIC CONSTANTS IN THIN FILMS OF AN . . . PHYSICAL REVIEW E67, 031601 ~2003!
@1# T. Tanaka, M. Morigami, and N. Atoda, Jpn. J. Appl. Phy
Part 132, 6059~1993!.

@2# H. Cao, P. Nealey, and W. Domke, J. Vac. Sci. Technol. B18,
3303 ~2000!.

@3# T. Boehme and J.J. de Pablo, J. Chem. Phys.116, 9939~2002!.
@4# D. Fryer, R. Peters, E. Kim, J. Tomaszewski, J.J. de Pablo

Nealey, C. White, and W. Wu, Macromolecules34, 5627
~2001!.

@5# J.A. Torres, P.F. Nealey, and J.J. de Pablo, Phys. Rev. Lett85,
3221 ~2000!.

@6# J. Lutsko, J. Appl. Phys.64, 1152~1988!.
@7# J.P. van der Eerden, A. Roos, and J. van der Veer, J. C

Growth 99, 77 ~1990!.
@8# J.R. Ray, J. Appl. Phys.53, 6441~1982!.
@9# B.D. Todd, D.J. Evans, and P.J. Daivis, Phys. Rev. E52, 1627

~1995!.
@10# F. Varnik, J. Baschnagel, and K. Binder, J. Chem. Phys.113,

4444 ~2000!.
@11# J.H. Irving and J.G. Kirkwood, J. Chem. Phys.18, 817~1950!.
@12# D. Tsai, J. Chem. Phys.70, 1275~1979!.
@13# J. Rowlinson and B. Widom,Molecular Therory of Capillarity
03160
,

P.

st.

~Oxford University Press, Oxford, 1982!.
@14# A. Harasima, Adv. Chem. Phys.1, 203 ~1958!.
@15# B. Hafskjold and T. Ikeshoji, Phys. Rev. E66, 011203~2002!.
@16# M. Parrinello and A. Rahman, J. Appl. Phys.52, 7182~1981!.
@17# P.J. Fay and J.R. Ray, Phys. Rev. A46, 4645~1992!.
@18# M. Sprik, R.W. Impey, and M.L. Klein, Phys. Rev. B29, 4368

~1984!.
@19# E.R. Cowley, Phys. Rev. B28, 3160~1983!.
@20# M. Li and W.L. Johnson, Phys. Rev. B46, 5237~1992!.
@21# J.R. Ray, M.C. Moody, and A. Rahman, Phys. Rev. B32, 733

~1985!.
@22# J.F. Nye,Physical Properties of Crystals: Their Representati

by Tensors and Matrices~Clarendon Press, Oxford, 1984!.
@23# A.E.H. Love,A Treastise on the Mathematical Theory of Ela

ticity, 4th ed.~Cambridge University Press, Cambridge, 192!.
@24# M. Kluge, D. Wolf, J. Lutsko, and S. Phillpot, J. Appl. Phy

67, 2370~1990!.
@25# A.A. Gusev, M.M. Zehnder, and U.W. Suter, Phys. Rev. B54,

1 ~1996!.
@26# J.P.v.d. Eerden, H.J.F. Knops, and A. Roos, J. Chem. Phys96,

714 ~1992!.
1-7


